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Abstract

We consider a new class of essentially non-oscillatory (ENO) piecewise polynomial reconstructions together with
interpolants based on Monotone Upwind Schemes for Conservation Laws. We improve the second-order ENO
polynomial reconstruction by choosing an additional point inside the stencil in order to obtain the highest accuracy
when combined with various non-linear limiters. The resulting algorithms are based on only one stencil selection, and
we show that they can be efficiently implemented with largest allowable CFL numbers using optimal strong
stability-preserving Runge-Kutta time evolution methods. The numerical results indicate that in some cases the
schemes yield errors smaller in magnitude as compared to the fourth-order ENO scheme.
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Introduction
In this paper, we review and modify the essentially non-
oscillatory (ENO) reconstruction of [1] for the approxi-
mate solution of hyperbolic conservation laws

ut + f (u)x = 0, u ∈ R
d, d ≥ 1, (1)

with initial data u(x, 0) = u0(x).
For the sake of simplicity, we first consider scalar con-

servation laws, that is, d = 1 in (1). The discretisation
of (1) is done on a uniform spatial grid where the cell
Ij =[ xj−1/2, xj+1/2] has a width h. Also, let xj = 1

2 (xj−1/2+
xj+1/2) be the mid-cell grid point of Ij. Integrating (1)
over the cell Ij leads to the semi-discrete conservation
equation that samples solutions at cell centres and can be
formulated as

dūj(t)
dt

= −1
h

[
f̂j+ 1

2
− f̂j− 1

2

]
, (2)

where the cell average of u on Ij is given by ūj ≡
1
h

∫
Ij u(x, t) dx and the exact flux is f̂j+ 1

2
≡ f (u(xj+ 1

2
, t)).

The computation of the flux at cell boundaries requires
a polynomial reconstruction that has been the subject of
considerable work [1-4].
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ENO reconstructions aim to achieve high accuracy
in smooth regions in addition to resolving disconti-
nuities with correct positions by adaptively selecting
the smoothest stencil among several candidates without
introducing spurious oscillations. The authors in [5,6]
showed that the weighted ENO (WENO) schemes [3,4,7],
both upwind or central based, fail to satisfy the sign prop-
erty. Furthermore, they showed that ENO reconstructions
and interpolation procedures are stable.
However, low-order ENO schemes have been observed

to smear discontinuities [8] and smoothing up of corners
[9]. Higher-order ENO reconstructions decrease damping
but generate significant oscillations when solving hyper-
bolic systems unless costly characteristic decompositions
are used [10]. Also, Xu and Shu [11] noted that it is not
possible to maintain the non-oscillatory property and at
the same time avoid the smearing of discontinuities by
high-order ENO schemes.
The works of [12-14] demonstrated that hybridized

schemes perform better than the existing schemes by
taking advantages of each of their components. For exam-
ple, the authors in [15-17] proposed the use of limiters
in conjunction with ENO reconstructions. The numeri-
cal experiments described in those works show that the
modified scheme reduced smearing near discontinuities
and gave good resolutions of corners and local extremas.
Furthermore, different ENO-type methods have been
extended to multi-dimensional problems, see for example
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[15,18-21], and Serna and Marquina [15] noted that some
ENO methods combined with limiters performed bet-
ter than conventional ENO methods of similar order for
multi-dimensional problems where fine structures appear
to be important.
This paper proposes a new hybrid scheme that reduces

the damping near discontinuities. Our technique avoids
the costly characteristic decomposition and is based on
modifying the second-order ENO polynomial reconstruc-
tion to obtain a higher-order polynomial combined with
non-linear limiters to avoid spurious oscillations. Instead
of using a reconstruction over two cells for finding the
fluxes of (2), we use an additional point within the sten-
cil by means of a MUSCL-type interpolant [22] with
numerical derivatives. Those derivatives depend on non-
linear limiters that vary according to the smoothness of
its vicinity and improve the behaviour of the scheme near
discontinuities.
We give an outline of this paper. We first describe the

new reconstructions with various interpolants and lim-
iters. We then give the results of numerical experiments
for our schemes, and we extend the new class of hybrid
schemes to solve hyperbolic systems of conservation laws.
The conclusions on this work are presented in the final
section.

Methods
A hybrid ENO-flux limiter scheme
We use a finite volume approach for one-dimensional
equations, and we approximate u(xj, t) by uj. Assuming
that the cell averages ūj are known at time t, Harten
et al. [1] proposed a piecewise polynomial reconstruc-
tion u(x, t) = ∑

j pj(x) χj(x) to solve (2), where χj(x) is
the characteristic function of the cell Ij. In the second-
order ENO2 reconstruction, pj(x) is a linear polynomial
on the cell Ij, and it maintains conservation, that is,
1
h

∫
Ij pj(x)dx = ūj.
The two-cell stencils of ENO2 are obtained by either

choosing r = 0 or r = 1 cell to the right of Ij. Let
V (x) be the primitive function of u(x, t), that is, V (x) =∫ x
−∞ u(ξ , t)dξ . Then interpolating V (x) at the cell bound-
aries xj−r+i−1/2 for i = 0, 1, 2 by using Newton’s interpo-
lation formula and differentiating the new polynomial, we
get

pj(x) =
2∑

i=1
V

[
xj−r− 1

2
, . . . , xj−r+i− 1

2

]

×
i−1∑
m=0

i−1∏
l=0, l �=m

(
x − xj−r+l− 1

2

)
,

(3)

where V is a divided difference. The 0th-degree divided
difference of V (x) is simply V [ xj+1/2]≡ V (xj+1/2). The
ENO polynomials approximate the cell boundaries of (2)

by taking u−
j+1/2 = pj(xj+1/2) and u+

j+1/2 = pj+1(xj+1/2).
An evolution step consists of collecting the point val-
ues u(xj+1/2, t) from u−

j+1/2 and u+
j+1/2, and f̂j+ 1

2
=

h(u−
j+ 1

2
,u+

j+ 1
2
), where h(., .) is a monotone flux. Some pos-

sible choices for these class of schemes are the Godunov,
Lax-Friedrichs and Roe with entropy fix fluxes. The
advantages and disadvantages associated with these fluxes
are discussed by [8]. In this paper, we will use the Lax-
Friedrichs flux.
We start the new reconstruction by selecting a two-cell

stencil as for the ENO scheme. Let yi = xj+i−r−1/2 for
i = 0, 1 and 2 denote the cell boundaries of the stencil. The
next step consists of adding another point y3 = xj ∈ Ij.
The interpolating polynomial is then given by

pj(x) =
3∑

i=1
V [ y0, . . . , yi]

i−1∑
m=0

i−1∏
l=0, l �=m

(x − yl). (4)

In order to compute the divided differences of (4), we
need a polynomial that retains information within the
cells Ij. Nessyahu and Tadmor [23] used a second-order
MUSCL interpolant

Lj(x) = ūj + (x − xj)
1
h
u′
j, x ∈ Ij, (5)

to compensate for the numerical viscosity introduced by
the Lax-Friedrichs scheme [24]. Since 1

h
∫
Ij Lj(x)dx = ūj,

polynomial (5) retains conservation. The divided differ-
ence V [ y2, y3] given by

V [ y2, y3]= 1
xj − xj−r+3/2

×
(∫ xj

−∞
u(x)dx −

∫ xj−r+3/2

−∞
u(x)dx

)

is computed using the MUSCL interpolant (5), such that
u(x) = ∑

j Lj(x)χj(x), where χj(x) is the characteristic
function of Ij. The divided differences are found to be

V [ y2, y3]=
(1 + 2r)(4ūj + u′

j) + 8(1 − r)ūj+1

12
, r = 0, 1.

(6)

From (4) and (6), we deduce the following approximations
at the cell boundaries xj+ 1

2
:

If∣∣∣V [
xj− 3

2
, xj− 1

2
, xj+ 1

2

]∣∣∣ ≤
∣∣∣V [

xj− 1
2
, xj+ 1

2
, xj+ 3

2

]∣∣∣ ,
we take

u− (1)
j+ 1

2
= 1

6
(ūj−1 + 5ūj + 4u′

j), (7)

u+ (1)
j+ 1

2
= 1

6
(ūj + 5ūj+1 − 2u′

j+1); (8)
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otherwise

u− (0)
j+ 1

2
= 1

6
(5ūj + ūj+1 + 2u′

j), (9)

u+ (0)
j+ 1

2
= 1

6
(5ūj+1 + ūj+2 − 4u′

j+1). (10)

For the numerical derivative u′
j, we first consider the

non-linear limiter of [23]:

u′
j = MM

{
θ�ūj+ 1

2
,
1
2
(ūj+1 − ūj−1), θ�ūj− 1

2

}
, (11)

where the differences are given by �ūj+1/2 = ūj+1 − ūj
and �2ūj = ūj+1 − 2ūj + ūj−1. The MinMod limiter MM
is set as

MM{x1, x2, . . .} =
⎧⎨
⎩
minp {xp} if xp > 0 ∀p,
maxp {xp} if xp < 0 ∀p,
0 otherwise.

The classical MinMod limiter with θ = 1 (MM1) is
second-order accurate and gives the numerical derivative

u′
j = MM

{
�ūj+ 1

2
, �ūj− 1

2

}
, (12)

which is non-oscillatory in the sense that

0 ≤ u′
j · sign(�ūj± 1

2
) ≤ Const.·

∣∣∣MM
(
�ūj− 1

2
,�ūj+ 1

2

)∣∣∣ .
Since MM1 may oversmear some discontinuities [23],

we can instead choose θ = 2 (MM2) to have a steeper
slope, unless oscillations are present, in which case we let
u′
j = 0. This mechanism is aimed to reduce spurious oscil-

lations allowed by other reconstructions like ENO [1] and
WENO [3]. A Taylor expansion of the cell averages about
the cell boundaries shows that the reconstructions (7), (8),
(9) and (10) combinedwith the different values of theMin-
Mod limiter vary from first-order near discontinuities up
to third order in smooth regions.
In the numerical examples, we also combine the newly

developed reconstructions with the following two non-
linear limiters:

(a) UNO limiter. The accuracy of (12) drops at the
non-sonic critical grid values uj, where
�uj− 1

2
· �uj+ 1

2
< 0 �= f ′(uj) [25,26]. The UNO

limiter [27] adds second-order differences to the
MinMod limiter (12) to achieve high accuracy
including at critical points

u′
j = MM

{
�ūj− 1

2
+ 1

2
MM

{
�2ūj−1, �2ūj

}
,

�ūj+ 1
2

− 1
2
MM

{
�2ūj, �2ūj+1

}}
.

(13)

This feature retains information about the slopes of
the solution. However, it uses a wider stencil with
respect to existing ENO reconstructions of

comparable accuracy. This stencil allows the limiter
to avoid discontinuities, and in case extremas cannot
be avoided, the accuracy of the UNO limiter
decreases until a non-oscillatory approximation is
obtained. Contrary to the power limiter of [15] which
influences only second-order derivatives, the UNO
limiter fully adapts the accuracy of our proposed
polynomial reconstruction to the approximated
profile. A Taylor expansion of the cell averages of the
approximations (7) to (10) combined with the UNO
limiter gives up to third-order accuracy.

(b) Harmod limiter [15] is the harmonic mean of two
differences of the same sign

u′
j =

(
sign

(
�ūj− 1

2

)
+ sign

(
�ūj+ 1

2

)) ∣∣∣�ūj− 1
2

∣∣∣ ∣∣∣�ūj+ 1
2

∣∣∣∣∣∣�ūj− 1
2

∣∣∣ +
∣∣∣�ūj+ 1

2

∣∣∣ .

Higher-order interpolant
A smoother limiter can be obtained for the proposed
scheme by using a higher-order piecewise polynomial,
which in turn can be obtained using the third-order non-
oscillatory reconstruction due to [28]. This reconstruction
seeks quadratic polynomials of the form:

qj(x) = aj + bj
(x − xj

h

)
+ cj

(x − xj
h

)2
,

such that the piecewise parabolic reconstruction satis-
fies the properties of conservation, 1

h
∫
Ij qj(x)dx = ūj.

It is also third-order accurate, that is, qj(x) = u(x) +
O(h3). In addition, the quadratic polynomial interpo-
lates the two neighbouring cell averages ūj±1. These three
constraints uniquely determine the coefficients as aj =(
ūj − 1

24�
2ūj

)
, bj = �0ūj and cj = 1

2�
2ūj. Finally, in order

to avoid spurious extremas at the cell interfaces, a con-
vex modification of the form Lj(x) = ūj + θj

(
qj(x) − ūj

)
and 0 < θj < 1 is used where the limiter θj is sought
such that (1 − θj) is proportional to the interface jump
qj+1(xj+ 1

2
) − qj(xj+ 1

2
).

The limiter θj is constructed in terms of the following
cell quantities:

Mj = max
x∈Ij

qj(x), mj = min
x∈Ij

qj(x),

and

Mj± 1
2

= max
{
1
2
(ūj + ūj±1), qj±1(xj± 1

2
)

}
,

mj± 1
2

= min
{
1
2
(ūj + ūj±1), qj±1(xj± 1

2
)

}
,
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Table 1 L1 errors and orders of convergence and CPU times for Problem 1

MM1 MM2 UNO Harmod Quadratic ENO3

N

160 3.383(−2) 1.824(−3) 2.110(−4) 6.483(−3) 2.110(−4) 2.110(−4)

320 9.713(−3) 3.503(−4) 2.638(−5) 1.435(−3) 2.638(−5) 2.638(−5)

640 2.639(−3) 6.566(−5) 3.298(−6) 3.132(−4) 3.298(−6) 3.298(−6)

L1 order 1.88 2.42 3.00 2.20 3.00 3.00

Time (s) for N = 160 0.8112 0.9449 1.0731 0.8290 5.1081 1.0109

and is given in [29] as

θj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
{Mj+ 1

2
−ūj

Mj−ūj ,
mj− 1

2
−ūj

mj−ūj , 1
}
, if ūj−1 < ūj < ūj+1,

min
{Mj− 1

2
−ūj

Mj−ūj ,
mj+ 1

2
−ūj

mj−ūj , 1
}
, if ūj−1 > ūj > ūj+1,

1, otherwise.
(14)

The quadratic interpolant can then be written as follows:

Lj(x) = uj + u′
j

(x − xj
h

)
+ 1

2
u′′
j

(x − xj
h

)2
, x ∈ Ij,

(15)

where u′
j = θj�0ūj, u′′

j = θj�2ūj and uj = ūj − 1
24u

′′
j . Con-

sidering the additional point y3 = xj ∈ Ij to compute the
divided differences V [ y2, y3] and using (15), we get (6).
Thus, as before, we get the approximations (7), (8), (9) and
(10) at the cell boundaries, and where now the numeri-
cal derivatives dependent on (14). We recover third-order
accurate ENO spatial reconstructions when the parameter
θj = 1 in smooth regions.
We remark that the hybrid reconstructions can be

extended to ENO schemes of any order by interpolating

the primitive values at cell boundaries along with the
additional point xj. The first-order divided difference
containing xj of the interpolating polynomial is evaluated
using a conservative piecewise polynomial with numerical
derivatives of similar accuracy as the ENO scheme. Those
numerical derivatives are chosen to be non-oscillatory in
the sense of (W)ENO schemes [1,3] or to damp spurious
oscillations as in [23,30].

Results and discussion
Scalar test problems
We describe the results of numerical experiments using
some scalar test problems. The scalar test problems have
periodic boundary conditions and are solved on the inter-
val [−1, 1]. The pth-order ENO scheme is denoted by
ENOp, and the hybrid schemes by the limiter used. The
higher-order hybrid reconstruction with the quadratic
polynomial (15) is denoted as Quadratic. All the recon-
structions are combined with the Lax-Friedrichs flux [8]
andwith strong stability-preserving Runge-Kutta (SSPRK)
methods [31-33]. The experiments are carried out in
MATLAB environment on a 1.91-GHz processor with 992
MB of RAM.

Problem 1. We consider the linear advection equation
ut+ux = 0 with the continuous initial condition u(x, 0) =

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

(a) ENO1, ENO2, MM1,

MM2, UNO, Harmod;

(c = 1).

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

(b) ENO3; (c = 0.5).

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

(c) ENO4; (c = 0.5).

Figure 1 Solutions for Problem 2. Solid lines indicate exact solutions; dots, approximations.



Peer et al. Mathematical Sciences 2013, 7:15 Page 5 of 11
http://www.iaumath.com/content/7/1/15

Table 2 L1 errors and CPU times of solutions of Problem 3
for T= 0.64

Number of cells

40 80 160 320

ENO1

L1 error 1.617(−1) 9.632(−2) 5.657(−2) 3.293(−2)

Time (s) 0.0034 0.0072 0.0163 0.0410

ENO2

L1 error 6.951(−2) 3.325(−2) 1.903(−2) 1.087(−2)

Time (s) 0.0060 0.0121 0.0271 0.0704

ENO3

L1 error 5.327(−2) 2.488(−2) 1.521(−2) 8.926(−3)

Time (s) 0.0088 0.0179 0.0401 0.1049

ENO4

L1 error 4.758(−2) 2.081(−2) 1.404(−2) 9.943(−3)

Time (s) 0.0120 0.0242 0.0564 0.1500

MM1

L1 error 7.292(−2) 3.551(−2) 1.968(−2) 1.113(−2)

Time (s) 0.0067 0.0146 0.0334 0.0892

MM2

L1 error 5.205(−2) 2.487(−2) 1.503(−2) 8.728(−3)

Time (s) 0.0076 0.0164 0.0386 0.1035

UNO

L1 error 5.942(−2) 2.778(−2) 1.651(−2) 9.389(−3)

Time (s) 0.0088 0.0185 0.0430 0.1138

Harmod

L1 error 5.787(−2) 2.743(−2) 1.608(−2) 9.293(−3)

Time (s) 0.0067 0.0149 0.0345 0.0892

Quadratic

L1 error 5.484(−2) 2.893(−2) 1.518(−2) -

Time (s) 0.1550 0.4436 1.3727 -

sin(πx). We solve the problem up to time T = 10 using
the third-order SSPRK scheme with the CFL number c =
0.45. The results for the hybrid schemes are shown in
Table 1. The L1 order of convergence is for 320 to 640
cells used during the computations, and the CPU times

are for 160 cells. The hybrid schemes, which require a
stencil selection only once, give better results than ENO1
and ENO2 as expected. The hybrid scheme with the lim-
iter MM1 produces error of the same order as ENO2.
The limiters MM2 and Harmod achieve rates of con-
vergence greater than 2, whereas UNO and Quadratic
produce third-order results as ENO3. However, the hybrid
scheme with the quadratic piecewise polynomial (15)
requires significantly more time to run. MM1, MM2 and
Harmod limiters have comparable CPU times to ENO2,
whereas UNO limiter gives CPU times of similar order
to ENO3.

Problem 2. We consider the linear advection equation
ut+ux = 0 with initial condition given by the square wave
u(x, 0) = 1 for |x| < 1/3 and 0 elsewhere. Figure 1 shows
the results obtained at time T = 4 using 50 equally spaced
cells.We observe that the hybrid schemes approximate the
exact solution with high accuracy for c = 1. ENO3 and
ENO4 become unstable and diverge for c = 1. Figure 1b,c
gives the ENO3 and ENO4 solutions for c = 0.5, where
the solutions are damped near the discontinuities in both
cases.

Problem 3. Our next experiment consists of the invis-
cid Burgers’ equation ut + (0.5u2)x = 0 with the discon-
tinuous initial condition u(x, 0) = 1 for |x| < 1/3 and 0
elsewhere. In Table 2, we give the L1 error and CPU time
of the different solutions for T = 0.64. The time evo-
lution process for the different schemes is done with the
third-order SSPRK scheme and c = 0.8. We see that as
expected, ENO1 produces the largest error. ENO2 and the
hybrid scheme with the limiter MM1 produce numerical
solutions of comparable accuracy. The remaining hybrid
schemes give results of comparable accuracy to ENO3 and
ENO4. The hybrid schemes with the MM1 and Harmod
limiters have comparable CPU times to ENO2, whereas
using theMM2 andUNO limiters give timings of the same
order as ENO3. The Quadratic limiter is again the slow-
est of the different hybrid schemes and diverges on refined
grids for large CFL numbers.
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(a) Density

0

(b) Velocity (c) Pressure

Figure 2 Approximations of Sod problem by ENO2.
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Figure 3 Approximations of Sod problem by ENO3.
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Figure 4 Approximations of Sod problem byMM1.
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Figure 5 Approximations of Sod problem byMM2.
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Figure 6 Approximations of Sod problem by UNO.



Peer et al. Mathematical Sciences 2013, 7:15 Page 7 of 11
http://www.iaumath.com/content/7/1/15

−5 0 5 −5 0 5 −5 0 5

0.2

0.4

0.6

0.8

1

(a) Density

0

0.2

0.4

0.6

0.8

1

(b) Velocity

0.2

0.4

0.6

0.8

1

(c) Pressure

Figure 7 Approximations of Sod problem by Harmod.
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Figure 8 Approximations of Lax problem by ENO2.
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Figure 9 Approximations of Lax problem by ENO3.
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Figure 10 Approximations of Lax problem byMM1.
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Figure 11 Approximations of Lax problem byMM2.

Systems of conservation laws
We extend our scheme to solve one-dimensional hyper-
bolic systems of conservation laws for (1) of the type

Ut + F(U)x = 0. (16)

The Jacobian A(u) of the flux F(u) has distinct real eigen-
values.
At present, we pay more attention to solve the Euler

equations of gas dynamics for a polytropic gas:

∂

∂t

⎡
⎣ ρ

ρq
E

⎤
⎦ + ∂

∂x

⎡
⎣ ρq

ρq2 + p
q(E + p)

⎤
⎦ = 0, p = (γ − 1)(E − 1

2
ρq2).

(17)

Here ρ, q, p and E are respectively the density, velocity,
pressure and total energy of the conserved fluid, and the
ratio of the specific heats γ = 1.4.

There are two methods to extend the numerical
schemes considered, namely by doing a componentwise
extension and using characteristic decomposition. Liu and
Osher [10] noted that high-order ENO/WENO schemes
generate significant oscillations when solving hyperbolic
systems unless costly characteristic decompositions are
used. In the present work, we show that our new scheme is
still efficient while adopting the less expensive componen-
twise extension for the stencil selection for each variable
of U. The eigenvalues of the Jacobian matrix A are

λ1(U) = q − a, λ2(U) = q, λ3(U) = q + a,

where a = √
γ p/ρ is the sound speed. We then

use the Lax-Friedrichs flux for systems to find the val-
ues at the cell boundaries by the methods described
previously
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Figure 12 Approximations of Lax problem by UNO.
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Figure 13 Approximations of Lax problem by Harmod.
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Table 3 CPU times of Sod and Lax shock tubes for c= 0.8
Shock tubes Number MM1 MM2 UNO Harmod ENO2 ENO3

Sod 50 0.0318 0.0364 0.0390 0.0326 0.0269 0.0364

100 0.0819 0.0932 0.1000 0.0829 0.0680 0.0940

200 0.4310 0.4920 0.4990 0.4153 0.4679 0.5812

400 1.2607 1.3641 1.6299 1.2589 1.1648 1.7618

Lax 50 0.0662 0.0763 0.0831 0.0685 0.0559 0.0793

100 0.1763 0.2080 0.2258 0.1818 0.1483 0.2109

200 0.7438 0.9097 1.2192 0.9168 0.7431 1.1855

400 2.7978 3.1485 3.5679 2.9055 2.4790 3.8824

h(a, b) = 1
2

[
f (a) + f (b) − α(b − a)

]
,

α = max
u

max
j

∣∣λj(u)
∣∣ .

We test the numerical schemes for the Euler equations
before the perturbations in the solutions reach the bound-
ary of the computational domain on the interval [−5, 5]
with c = 0.8 using the third-order SSPRK scheme.

Sod problem
We solve the equations of gas dynamics (17) with the
initial conditions given by [34]

U(x, 0) =
{

(1, 0, 2.5)T , −5 ≤ x < 0,
(0.125, 0, 0.25)T , 0 ≤ x ≤ 5. (18)

Figures 2, 3, 4, 5, 6 and 7 show the approximations
obtained by the different schemes at time T = 2 for
200 cells. For this problem, ENO1 (not shown here) is
too diffusive, while ENO3 has some oscillations successive
to the expansion waves due to the lack of a mechanism
to treat the oscillations still present near discontinuities.
The scheme with the MM2 limiter presents overshooting
because of the steep approximations of the slopes. Tay-
lor series expansions carried out show that the hybrid
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Figure 14 Burgers’ equation by hybrid scheme with UNO limiter.
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scheme with the MM1 limiter gives comparable results
to ENO2, whereas the use of the other limiters present
sharper approximations of the shocks.

Lax problem
Next, we solve (17) using the initial condition of [35]

U(x, 0) =
{

(0.445, 0.31061, 8.92840289)T , −5 ≤ x < 0,
(0.5, 0, 1.4275)T , 0 ≤ x ≤ 5.

(19)

For this more severe shock tube problem, we show the
different approximations on 200 cells at T = 1.5 in
Figures 8, 9, 10, 11, 12 and 13. Similar to Sod’s problem,
the MM1 limiter with the hybrid scheme gives compara-
ble results to ENO2. The hybrid scheme with the MM2
limiter produces some overshooting in the approximation
of the density. For componentwise extension, the UNO
and Harmod limiters give an overall good resolution with
little smearing of the approximations of shocks for the
velocity and pressure profiles, whereas ENO3 allows more
oscillations in the numerical results of the velocity.
In Table 3, we give the CPU times for the different

numerical solutions of the shock tube problems. We note
that speed relationship of the schemes with component-
wise extension is similar to scalar case.

Multi-dimension extension
In the 1D experiments, we demonstrated that the hybrid
scheme with UNO limiter is similar to ENO3 on most
problems for similar CPU times. Now, we extend the
hybrid scheme with UNO limiter to solve 2D equations
which can be generalized to multi-dimensional problems.
Following the recommendations of [8], we use a finite
difference approach for such problems. This technique
is computationally less expensive than the finite volume
technique for which quadrature rules are necessary. A
more detailed explanation of finite difference schemes can
be found in [3,8].
We solve Burgers’ equation ut + ( 12u

2)x + ( 12u
2)y =

0 for the initial condition from [36], u(x, y, 0) =
sin2(πx) sin2(πy), on the domain [ 0, 1]×[ 0, 1] with
periodic boundary conditions. In Figure 14, we display
the results up to T = 4 on 50 × 50 grid with λ =
0.3. We observe that the solutions are well resolved and
non-oscillatory.

Conclusion
The implementation of ENO schemes requires many
selection statements. In this paper, we have proposed
ENO-flux limiter schemes which reduce the number of
selection steps. These schemes are shown to use the
large CFL numbers allowed by the SSPRK methods for
the time evolution step. The new methods were based

on only one stencil selection, and we recovered third-
order ENO reconstructions on smooth regions, which
otherwise were only obtained after more selection steps.
For some discontinuous problems, our numerical results
indicated that the hybrid ENO-flux limiter schemes per-
formed better and were computationally quicker to run
as compared to some higher-order ENO schemes. When
the limiter MM1 was used with the hybrid scheme, we
got comparable results to ENO2. Applying the MM2 lim-
iter produced sharper results on shocks, but it generated
overshooting in the profiles of hyperbolic systems because
of the steep approximations of the slopes. The hybrid
schemes with UNO and Harmod limiters achieved the
best resolved approximations, produced sharp resolutions
of shocks and reduced the oscillations which may be
present in ENO3. For hyperbolic systems, componentwise
extensions were adopted instead of characteristic decom-
positions. We would like to mention that according to
existing literature, for example [10], characteristic decom-
positions may reduce oscillations but at the expenses of
more computations.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AAIP contributed to the mathematical derivations and writing of the paper
and carried out all numerical tests. DYT and MB contributed to the
mathematical derivations and writing of the paper. All authors read and
approved the final manuscript.

Acknowledgements
The authors thank the anonymous referees whose comments improved our
work and the presentation of this paper. This work is dedicated with respect
and appreciation to Professor Mahinder Kumar Jain.

Author details
1Department of Applied Mathematical Sciences, University of Technology,
Mauritius, La Tour Koenig, Pointe-aux-Sables, Mauritius. 2Department of
Mathematics, University of Mauritius, Reduit, Mauritius.

Received: 30 April 2012 Accepted: 23 November 2012
Published: 23 March 2013

References
1. Harten, A, Engquist, B, Osher, S, Chakravarthy, S: Uniformly high order

accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71,
231–303 (1987)

2. Liu, XD, Osher, S, Chan, T: Weighted essentially non-oscillatory schemes.
J. Comput. Phys. 115, 200–212 (1994)

3. Jiang, GS, Shu, CW: Efficient implementation of weighted ENO schemes.
J. Comput. Phys. 126, 202–228 (1996)

4. Peer, AAI, Dauhoo, MZ, Bhuruth, M: A method for improving the
performance of the WENO5 scheme near discontinuities. Appl. Math. Lett.
22, 1730–1733 (2009)

5. Fjordholm, U, Mishra, S, Tadmor, E: Entropy stable ENO scheme. In
Proceedings of the 13th International Conference on Hyperbolic Problems:
Theory, Numerics, Applications, Beijing (2010)

6. Fjordholm, U, Mishra, S, Tadmor, E: ENO reconstruction and ENO
interpolation are stable. Found. Comput. Math. 13(2), 139–159 (2013)

7. Levy, D, Puppo, G, Russo, G: Central WENO schemes for hyperbolic systems
of conservation laws. Math. Model. Numer. Anal. 33(3), 547–571 (1999)

8. Shu, CW: Essentially non-oscillatory and weighted essentially
non-oscillatory schemes for hyperbolic conservation laws. Tech. Rep,
97–65, ICASE (1997)



Peer et al. Mathematical Sciences 2013, 7:15 Page 11 of 11
http://www.iaumath.com/content/7/1/15

9. Marquina, A: Local piecewise hyperbolic reconstruction of numerical
fluxes for nonlinear scalar conservation laws. SIAM J. Sci. Comput. 15(4),
892–915 (1994)

10. Liu, XD, Osher, S: Convex ENO high order multi-dimensional schemes
without field by field decomposition or staggered grids. J. Comput Phys.
142, 304–330 (1998)

11. Xu, Z, Shu, CW: Anti-diffusive flux corrections for high order finite
difference WENO schemes. J. Comput. Phys. 205, 458–485 (2005)

12. Rider, WJ, Greenough, JA, Kamm, JR: Combining high-order accuracy with
non-oscillatory methods through monotonicity preservation. Int J.
Numer. Meth. Fluids. 47, 1253–1259 (2005)

13. Rider, WJ, Greenough, JA, Kamm, JR: Accurate monotonicity- and
extrema-preserving methods through adaptive nonlinear hybridizations.
J. Comput. Phys. 225, 1827–1848 (2007)

14. Costa, B, Don, WS: High order hybrid central-WENO finite difference
scheme for conservation laws. J. Comput. Appl. Math. 204, 209–218 (2007)

15. Serna, S, Marquina, A: Power ENO methods: a fifth-order accurate
Weighted Power ENO method. J. Comput. Phys. 194, 632–658 (2004)

16. Peer, AAI, Gopaul, A, Dauhoo, MZ, Bhuruth, M: New high-order ENO,
reconstructions for hyperbolic conservation laws. In Proceedings of the
2005 Conference on Computational andMathematical Methods on Science
and Engineering, Alicante, Spain, 446–455 (2005)

17. Peer, AAI, Dauhoo, MZ, Gopaul, A, Bhuruth, M: A Weighted ENO-flux
limiter scheme for hyperbolic conservation laws. Int J. Comput. Math. 87,
3467–3488 (2010)

18. Casper, J, Atkins, HL: A finite-volume high-order ENO scheme for
two-dimensional hyperbolic systems. J. Comput. Phys. 106, 62–76 (1993)

19. Casper, J, Shu, CW, Atkins, HL: Comparison of two formulations for
high-order accurate essentially nonoscillatory schemes. AIAA J. 32,
1970–1977 (1994)

20. Thornber, B, Mosedale, A, Drikakis, D: On the implicit large eddy
simulations of homogeneous decaying turbulence. J. Comput. Phys. 226,
1902–1929 (2007)

21. Zhang, R, Zhang, M, Shu, CW: On the order of accuracy and numerical
performance of two classes of finite volume WENO schemes. Commun.
Comput. Phys. 9, 807–827 (2011)

22. van Leer, B: Towards the ultimate conservative difference scheme, V A
second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136
(1979)

23. Nessyahu, H, Tadmor, E: Non-oscillatory central differencing for
hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990)

24. Tadmor, E: Numerical viscosity and the entropy condition for conservative
finite difference schemes. Math. Comput. 43, 369–382 (1984)

25. Harten, A: High resolution schemes for hyperbolic conservation laws.
J. Comput. Phys. 49, 357–393 (1983)

26. Osher, S, Tadmor, E: On the convergence of difference approximations to
scalar conservation laws. Math. Comput. 50, 19–51 (1988)

27. Harten, A, Osher, S: Uniformly high-order accurate nonoscillatory
schemes, I. SIAM J. Numer. Anal. 24(2), 279–309 (1987)

28. Liu, XD, Osher, S: Nonoscillatory high order accurate self-similar maximum
principle satisfying shock capturing schemes I. SIAM J. Numer. Anal. 33(2),
760–779 (1996)

29. Liu, XD, Tadmor, E: Third order nonoscillatory central scheme for
hyperbolic conservation laws. Numer. Math. 79, 397–425 (1998)

30. Peer, AAI, Gopaul, A, Dauhoo, MZ, Bhuruth, M: A new fourth-order
non-oscillatory central scheme for hyperbolic conservation laws. Appl.
Numer. Math. 58, 674–688 (2008)

31. Shu, CW, Osher, S: Efficient implementation of essentially non-oscillatory
shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

32. Shu, CW, Osher, S: Efficient implementation of essentially non-oscillatory
shock-capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

33. Gottlieb, S, Shu, CW, Tadmor, E: Strong stability-preserving high-order
time discretization methods. SIAM Rev. 43, 89–112 (2001)

34. Sod, G: A survey of several finite difference methods for systems of
nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)

35. Lax, PD: Weak solutions of nonlinear hyperbolic equations and their
numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

36. Levy, D, Puppo, G, Russo, G: A third order central WENO scheme for 2D
conservation laws. Appl. Numer. Math. 33, 415–421 (2000)

doi:10.1186/2251-7456-7-15
Cite this article as: Peer et al.: A hybrid ENO reconstruction with limiters for
systems of hyperbolic conservation laws.Mathematical Sciences 2013 7:15.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	Introduction
	Methods
	A hybrid ENO-flux limiter scheme
	Higher-order interpolant

	Results and discussion
	Scalar test problems
	Systems of conservation laws
	Sod problem
	Lax problem

	Multi-dimension extension

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

